Helical scattering and valleytronics in bilayer graphene
نویسنده
چکیده
We describe an angularly asymmetric interface-scattering mechanism which allows to spatially separate the electrons in the two low-energy valleys of bilayer graphene. The effect occurs at electrostatically defined interfaces separating regions of different pseudospin polarization, and is associated with the helical winding of the pseudospin vector across the interface, which breaks the reflection symmetry in each valley. Electrons are transmitted with a preferred direction of up to 60° over a large energetic range in one of the valleys, and down to −60° in the other. In a Y-junction geometry, this can be used to create and detect valley polarization.
منابع مشابه
Topological confinement in bilayer graphene.
We study a new type of one-dimensional chiral states that can be created in bilayer graphene (BLG) by electrostatic lateral confinement. These states appear on the domain walls separating insulating regions experiencing the opposite gating polarity. While the states are similar to conventional solitonic zero modes, their properties are defined by the unusual chiral BLG quasiparticles, from whic...
متن کاملConduction coefficient modeling in bilayer graphene based on schottky transistors
Nowadays carbon nanoparticles are applied on the island of single electron transistor and Nano-transistors. The basis of single electron devices (SEDs) is controllable single electron transfer between small conducting islands. Based on the important points in quantum mechanics, when a wave passes through several spatial regions with different boundaries, the wave function of the first region di...
متن کاملHelical edge states and fractional quantum Hall effect in a graphene electron-hole bilayer.
Helical 1D electronic systems are a promising route towards realizing circuits of topological quantum states that exhibit non-Abelian statistics. Here, we demonstrate a versatile platform to realize 1D systems made by combining quantum Hall (QH) edge states of opposite chiralities in a graphene electron-hole bilayer at moderate magnetic fields. Using this approach, we engineer helical 1D edge c...
متن کاملObservation of Anomalous Resistance Behavior in Bilayer Graphene
Our measurement results have shown that bilayer graphene exhibits an unexpected sharp transition of the resistance value in the temperature region 200~250 K. We argue that this behavior originates from the interlayer ripple scattering effect between the top and bottom ripple graphene layer. The inter-scattering can mimic the Coulomb scattering but is strongly dependent on temperature. The obser...
متن کاملTheory of carrier transport in bilayer graphene
We develop a theory for density, disorder, and temperature-dependent electrical conductivity of bilayer graphene in the presence of long-range charged impurity scattering and short-range defect scattering, establishing that both contribute significantly to determining bilayer transport properties. We find that although strong screening properties of bilayer graphene lead to qualitative differen...
متن کامل